Products & Solutions

MID Manufacturing Technologies

Our manufacturing technologies for your products

With the proven series production technologies of two-component injection molding and laser direct structuring, HARTING offers you a focused technology portfolio.

Thanks to the consolidated integration of the complete process chain and our many years of experience, you will benefit in more ways than one: High quality deliveries from a single source, short throughput times and flexibility that conforms to today's market requirements.

MIDs using metal substrates and LDS powder coating paint.

HARTING Mitronics has enlarged the manufacturing portfolio and is now offering LDS powder coating.
Two powder coating systems based on PU (Polyurethane) and based on PES (Polyether sulfone) are available.  
Applications demanding improved heat dissipation such as LED lighting can use powder coating as HARTING 3D-MID LDS technology. The manufacturing process is similar to the LDS process for molded parts.

Samples based on metal substrates (aluminium or steel) allow to reduce the lead time for sample manufacturing compared to polymer samples coming out of a mold tool.

The LPKF LDS powder coating design rules can be downloaded from this website.

Fine and Flexible: Laser direct structuring

The use of laser direct structuring (LDS) enables the implementation of MID components with fine and dense conductor path architectures, while offering greater scope for 3D design freedom.

A laser beam writes the subsequent conductor paths directly onto an injection molded part made of doped plastic. These laser-activated structures can then be metalized.

For high volumes: Two-shot injection molding.

The use of the two-shot injection molding procedure enables the implementation of MID components in very large lot sizes while maintaining the maximum scope of 3D design freedom.

In this method, the conductor paths are manufactured from different plastics by means of two successive injection molding processes. The plastic bearing the conductive pattern is provided with additives and is subsequently metalized.


Special thermoplastics are required in 3D-MID manufacturing.

In laser direct structuring, metal oxide additives that are activated by the laser energy for the subsequent chemical metallization are embedded in plastic. The metallization takes place only in the laser-structured areas of the component. The LDS process enables the use of numerous plastics that are selected on the basis of economic and technical criteria. High-temperature thermoplastics such as PEEK or LCP, technical materials like PA, PPA or PBT and duroplastic epoxide masses are available for this area.

In 2K technology (two-shot injection molding), special material combinations are employed to manufacture MIDs. A catalyst is compounded into one of the two materials so that the conductor paths can be selectively mapped during the subsequent metallization. For series applications in MID technology, the material combination LCP Vectra® E820i Pd is predominantly chosen as the metallizable component and LCP Vectra® E130i as the non-metallizable component. Further material combinations are possible.

Injection molding

In general, the process sequence in MID technology does not differ from conventional plastics processing. High quality calls for the appropriate preparation of the materials, observance of influences related to the manufacturing and adapted further processing after the injection molding process. The injection molding die is not permitted to exhibit any signs of damage.

The use of separating agents must also be avoided. Impurities on the die surface and in the plastic are not allowed. The injection molded part is not permitted to exhibit any cracks, burrs, bubbles, burn marks, shiny spots, streaks or sink marks. Appropriate precautions must be taken during part removal and assembly transport in order to avoid scraping the components.

Laser direct structuring

In the additive LPKF-LDS® process, the structuring is performed by a laser beam that exposes and activates special additives in the plastic. Here, the infrared laser light forms a microscopically rough surface in the irradiated areas with metal particles and micro-cavities.

The applied laser energy changes these metal particles in such a way that they act as a catalyst in the following metallization step, producing selective metal separation. The roughness allows the conductor paths to achieve the optimal bonding strength.


Metallization3D-MID metallization is usually handled without an external current by means of an additive conductor path structure, as the thermoplastic materials cannot be directly metalized with a galvanic method due to their isolating properties. The necessary electrons are provided by a metallization bath component and not by an external current source. If special applications require a greater current carrying capacity or special surface properties for the connection method, the chemically applied copper layer can be reinforced later in galvanic procedures.

HARTING AG Mitronics has set up one of the largest and most advanced, leading-edge metallization plants specifically for 3D-MIDs in Biel (Switzerland). In addition to the standard copper-nickel-gold layer system, the plant offers various expansion options for other final surfaces and is coordinated especially to the requirements of the laser direct structuring and two-shot injection molding 3D-MID procedures. Metallization takes place in a barrel or frame, depending on the size and geometry.

Get in touch
Elis Hirvonen
Head of Sales & Project Management
Get in touch
Greg Whiteside
Sales USA